Phenotypic characteristics and differentiation potential of gingival mesenchymal stem cells in hyperglycemia — An ex vivo exploratory study

Abstract

Background: The therapeutic use of gingival mesenchymal stem cells (GMSCs) as autologous cells may pose the challenge of alterations inflicted by the hyperglycemic environment.
Objective: This study aims to assess the effects of hyperglycemia on the characteristics of GMSCs in diabetics.
Materials and Methods: 10 patients who consented and fulfilled the criteria for inclusion and exclusion were recruited and categorized as test (HbA1c > 6.5) and control (HbA1c < 6.0). Gingival explants were obtained from gingival collar of teeth, washed, digested and cultured. The cells were subjected to microscopic observation to assess phenotype characteristics, and flow cytometry and qRT-PCR to assess differentiation potential. Stem cell markers CD90, CD73, CD105, CD34, CD45, HLA DR & HLA ABC, osteogenic differentiation markers RUNX2 & OCN, adipogenic differentiation markers PPARG2 & FABP4 and chondrogenic differentiation markers SOX9 & AGCN were evaluated.
Results: Microscopic appearance of spindle shaped cells was found to be comparable in both groups. Flow cytometry results demonstrated comparable expressions with both groups, samples being positive for CD90, CD73, CD105, HLA ABC and negative for CD34, CD45 & HLA DR. There were variations in the expression of markers when assessed for differentiation potentials.
Conclusions: The hyperglycemic environment did not manifest any changes in the phenotypic characteristics of GMSCs among diabetics. However, the expression of certain differentiation markers was significantly altered in the diabetic test population included. Further research is being conducted to understand the GMSCs in a hyperglycemic environment with an aim to develop strategies to optimize its clinical implications.
Keywords: Gingiva; Mesenchymal stem cells; Diabetes mellitus; Cell Differentiation; Hyperglycemia; Flow cytometry.

References

1. Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res. 2021;52:93-101. https://doi.org/10.1016/j.arcmed.2020.08.006. PMid:32977984

2. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11-5. https://doi.org/10.1016/j.stem.2011.06.008. PMid:21726829 PMCid:PMC3144500

3. De Klerk E, Hebrok M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front Endocrinol. 2021;12:631463. https://doi.org/10.3389/fendo.2021.631463. PMid:33716982 PMCid: PMC7953062

4. El-Badri N, Ghoneim MA. Mesenchymal stem cell therapy in diabetes mellitus: progress and challenges. J Nucleic Acids. 2013;2013:194858. https://doi.org/10.1155/2013/194858. PMid:23762531 PMCid:PMC3666198

5. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol. 2003;21:763-70. https://doi.org/10.1038/nbt841. PMid:12819790

6. Berezin AE. New trends in stem cell transplantation in diabetes mellitus type I and type II. Pancreas, kidney and skin regeneration. 2017:73-88. https://doi.org/10.1007/978-3-319-55687-1_3

7. Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, Si Y, Guo Y, Zang L, Mu Y, Han W. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells. 2016;34:627-39. https://doi.org/10.1002/stem.2238. PMid:26523620

8. Tsai PJ, Wang HS, Lin GJ, Chou SC, Chu TH, Chuan WT, Lu YJ, Weng YJ, Su CH, Hsieh PS, Sytwu HK. Undifferentiated Wharton’s Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice. Cell Transplant. 2015;24:155570. https://doi.org/10.3727/096368914X683016. PMid:25198179

9. Dentelli P, Barale C, Togliatto G, Trombetta A, Olgasi C, Gili M, Riganti C, Toppino M, Brizzi MF. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia. 2013;56:173-84. https://doi.org/10.1007/s00125-012-2734-7. PMid:23064289

10. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, Mishra GC, Wani MR. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393:377-83. https://doi.org/10.1016/j.bbrc.2010.01.126. PMid:20138833

11. Zhang W, Zhou L, Dang J, Zhang X, Wang J, Chen Y, Liang J, Li D, Ma J, Yuan J, Chen W. Human Gingiva-Derived Mesenchymal Stem Cells Ameliorate Streptozoticin-induced T1DM in mice via Suppression of T effector cells and Up-regulating Treg Subsets. Sci Rep. 2017;7:15249. https://doi.org/10.1038/s41598-017-14979-5. PMid:29127315 PMCid:PMC5681565

12. Su WR, Zhang QZ, Shi SH, Nguyen AL, Le AD. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms. Stem cells. 2011;29:1849-60. https://doi.org/10.1002/stem.738. PMid:21987520

13. Junaid R, Wahid M, Waseem FS, Habib R, Hasan A. Effect of glucose mediated oxidative stress on apoptotic gene expression in gingival mesenchymal stem cells. BMC Oral Health. 2021;21:1-3. https://doi.org/10.1186/s12903-021-02007-y. PMid:34922513 PMCid:PMC8684132

14. Chandra V, G S, Phadnis S, Nair PD, Bhonde RR. Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells. 2009;27:1941-53. https://doi.org/10.1002/stem.117. PMid:19544426

15. Chuang CC, Yang RS, Tsai KS, Ho FM, Liu SH. Hyperglycemia enhances adipogenic induction of lipid accumulation: involvement of extracellular signal-regulated protein kinase ½, phosphoinositide 3-kinase/Akt, and peroxisome proliferator-activated receptor gamma signaling. Endocrinology. 2007;148:4267-75. https://doi.org/10.1210/en.2007-0179. PMid:17540722

16. Fiori A. Effects of hyperglycemia on adipose-derived mesenchymal stromal cells: a study on their proangiogenic and immunomodulatory potential [Internet]. Heidelberg; 2020. https://doi.org/10.11588/heidok.00028610.

17. Hao H, Liu J, Shen J, Zhao Y, Liu H, Hou Q, Tong C, Ti D, Dong L, Cheng Y, Mu Y. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochem Biophys Res Commun. 2013;436:418-23. https://doi.org/10.1016/j.bbrc.2013.05.117. PMid:23770360
18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7. https://doi.org/10.1080/14653240600855905. PMid:16923606

19. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787-98. https://doi.org/10.4049/jimmunol.0902318. PMid:19923445 PMCid:PMC2881945

20. Mitrano TI, Grob MS, Carrión F, Nova-Lamperti E, Luz PA, Fierro FS, Quintero A, Chaparro A, Sanz A. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010;81:917-25. https://doi.org/10.1902/jop.2010.090566. PMid:20450355

21. Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud. 2009;6:260-70. https://doi.org/10.1900/RDS.2009.6.260. PMid:20043038 PMCid:PMC2836197

22. Ferroni L, Gardin C, Dalla Paola L, Campo G, Cimaglia P, Bellin G, Pinton P, Zavan B. Characterization of Dermal Stem Cells of Diabetic Patients. Cells. 2019;8:729. https://doi.org/10.3390/cells8070729. PMid:31315286 PMCid:PMC6678145

23. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7. https://doi.org/10.1126/science.284.5411.143. PMid:10102814

24. Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X. CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Int. 2019;2019:8717694. https://doi.org/10.1155/2019/8717694. PMid:31249602 PMCid:PMC6525959

25. Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24:1728-37. https://doi.org/10.1634/stemcells.2005-0546. PMid:16601078

26. Fu X, Chen Y, Xie F-N, Dong P, Liu W, Cao Y, Zhang WJ, Xiao R. Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Tissue Eng Part A. 2015;21:616-26. https://doi.org/10.1089/ten.tea.2013.0651. PMid:25256849 PMCid:PMC4334098

27. Li Y-M, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schütze N, Jakob F. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun. 2007;363:209-15. https://doi.org/10.1016/j.bbrc.2007.08.161. PMid:17868648

28. Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int J Mol Sci. 2014;15:20982-96. https://doi.org/10.3390/ijms151120982. PMid:25405732 PMCid:PMC4264207

29. Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R. Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev. 2010;19:1875-84. https://doi.org/10.1089/scd.2010.0009. PMid:20380516

30. Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes. 2014;63:900-11. https://doi.org/10.2337/db13-0436. PMid:24319114

31. Rharass T, Lucas S. High Glucose Level Impairs Human Mature Bone Marrow Adipocyte Function Through Increased ROS Production. Front Endocrinol. 2019;10:607. https://doi.org/10.3389/fendo.2019.00607. PMid:31551934 PMCid:PMC6746912

32. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685-700. https://doi.org/10.1016/S0092-8674(03)00432-X. PMid:12809600
Published
2024-03-25
How to Cite
BASAVARAJU, Suman et al. Phenotypic characteristics and differentiation potential of gingival mesenchymal stem cells in hyperglycemia — An ex vivo exploratory study. Journal of Oral Research, [S.l.], v. 13, n. 1, p. 1-14, mar. 2024. ISSN 0719-2460. Available at: <https://joralres.com/index.php/JOralRes/article/view/joralres.2024.001>. Date accessed: 08 sep. 2024. doi: https://doi.org/10.17126/joralres.2024.001.