Expression of CD44 in previously grafted alveolar bone.

  • Ricardo Ernesto Dueñas-Villamil. Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana. Bogotá, Colombia.
  • Leticia Belén Bernard-Gutiérrez Práctica privada. Guadalajara, México.
  • Diana Susely Hernández-Chavarría Facultad de Odontología, Universidad Francisco Marroquín, Guatemala.
  • Mercedes Olaya-Contreras Facultad de Medicina, Pontificia Universidad Javeriana. Colombia.
  • Nelly Stella Roa-Molina Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana. Bogotá, Colombia.
  • Adriana Rodriguez-Ciodaro Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana. Bogotá, Colombia.


Objetive: To determine the expressions of the bone surface marker CD44 in samples of alveolar bone pr iously regenerated with allograft, xenograft, and mixed, using the technique of guided bone regeneration. Material and Methods: This exploratory study was approved by the institutional research and ethics committee. By means of intentional sampling and after obtaining informed consent for tissue donation, 20 samples of alveolar bone previously regenerated with guided bone regeneration therapy with particulate bone graft and membrane were taken during implant placement. The samples were stained with hematoxylin-eosin for histological analysis, and by immunohistochemistry for the detection of CD44. Results: Sections with hematoxylin-eosin showed bone tissue with the presence of osteoid matrix and mature bone matrix of usual appearance. Of the CD44+ samples, 80% were allograft and 20% xenograft. The samples with allograft-xenograft were negative. There were no differences in the intensity of CD44 expression between the positive samples. The marker was expressed in osteocytes, stromal cells, mononuclear infiltrate, and some histiocytes. Eighty percent of the CD44+ samples and 100% of the samples in which 60 or more cells were labelled corresponded to allografts (p=0.000). A total of 67% of the samples from the anterior sector, and 40% from the posterior sector were CD44+ (p=0.689). Conclusion: This study shows for the first time that guided bone regeneration using allografts is more efficient for the generation of mature bone determined by the expression of CD44, compared to the use of xenografts and mixed allograft-xenograft, regardless of the regenerated anatomical area.


[1]. Estudio Nacional de Salud Bucal - ENSAB IV. Ministerio de Salud y Protección Social, República de Colombia. 2014.

[2]. Escolano Rivas J, Barrientos Sánchez S, Rodríguez Ciódaro A. Frecuencia y características de hallazgos y variaciones óseas en radiografías panorámicas de personas con edentulismo total. Univ Odontol. 2018; 36(78).

[3]. Jung RE, Ioannidis A, Hämmerle CHF, Thoma DS. Alveolar ridge preservation in the esthetic zone. Periodontol 2000. 2018;77(1):165-175.

[4]. Froum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent. 2006;26(6):543-551.

[5]. Solakoglu Ö, Götz W, Heydecke G, Schwarzenbach H. Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans. Clin Implant Dent Relat Res. 2019;21(5):1002-1016.

[6]. Sodek J, Mckee MD. Molecular and cellular biology of alveolar bone. Periodontol. 2000; 24(2): 99-126.

[7]. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92(10):860-7.

[8]. Cao JJ, Singleton PA, Majumdar S, Boudignon B, Burghardt A, Kurimoto P, Wronski TJ, Bourguignon LY, Halloran BP. Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. J Bone Miner Res. 2005; 20(1):30-40.

[9]. Wang X, Du Z, Liu X, Song Y, Zhang G, Wang Z, , Gao Z5, Wang Y, Wang W. Expression of CD44 standard form and variant isoforms in human bone marrow stromal cells. Saudi Pharm J. 2017;25(4):488-491.

[10]. Li Y, Zhong G, Sun W, Zhao C, Zhang P, Song J, Zhao D, Jin X, Li Q, Ling S, Li Y. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity. Sci Rep. 2015;5:16124.

[11]. Hughes DE, Salter DM, Simpson R. CD44 expression in human bone: a novel marker of osteocytic differentiation. J Bone Miner Res. 1994; 9(1): 39-44

[12]. Prakash MS, Ganapathy DM, Nesappan T. Assessment of labial alveolar bone thickness in maxillary central incisor and canine in Indian population using cone-beam computed tomography. Drug Invention Today 2019; 11(3), 712–4.

[13]. Dos Santos JG, Oliveira Reis Durão AP, de Campos Felino AC, Casaleiro Lobo de Faria de Almeida RM. Analysis of the Buccal Bone Plate, Root Inclination and Alveolar Bone Dimensions in the Jawbone. A Descriptive Study Using Cone-Beam Computed Tomography. J Oral Maxillofac Res. 2019;10(2):e4. doi: 10.5037/jomr.2019.10204. PMID: 31404187; PMCID: PMC6683387.

[14]. Schwarz F, Ferrari D, Sager M, Herten M, Hartig B, Becker J. Guided bone regeneration using rhGDF-5- and rhBMP-2-coated natural bone mineral in rat calvarial defects. Clin Oral Implants Res. 2009;20(11):1219-30.

[15]. Yao W, Shah B, Chan H-L, Wang H-L, Lin G-H. Bone Quality and Quantity Alterations After Socket Augmentation with rhPDGF-BB or BMPs: A Systematic Review. Int J Oral Maxillofac Implants. 2018;33(6):1255-1265.

[16]. Bartee BK. Extraction site reconstruction for alveolar ridge preservation. Part 1: rationale and materials selection. J Oral Implantol. 2001; 27 (4): 187-193. doi: 10.1563/1548-1336(2001)027<0187:ESRFAR>2.3.CO;2

[17]. Papečkys V, Rusilas H, Pranskunas M. Comparison of Bone grafts for Alveolar ridge dimensional preservation. JIMD. 2018; 5(1): 20-29.

[18]. Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten- year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003; 14 (3): 369-72.

[19]. Vargas Rico L, Serrano Méndez CA, Estrada Montoya J H. Preservación de alvéolos postexodoncia mediante el uso de diferentes materiales de injerto. Revisión de la literatura. Universitas Odontológica. 2012; 31(66): 145–183

[20]. Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012; 10(2): 118-125.

[21]. Lu Y, Xing J, Yin X, Zhu X, Yang A, Luo J, Gou J, Dong S, Xu J, Hou T. Bone Marrow-Derived CD44+ Cells Migrate to Tissue-Engineered Constructs via SDF-1/CXCR4-JNK Pathway and Aid Bone Repair. Stem Cells Int. 2019;2019:1513526.

[22]. Galindo-Moreno P, Hernández-Cortés P, Aneiros-Fernández J, Camara M, Mesa F, Wallace S, O'Valle F. Morphological evidences of Bio-Oss® colonization by CD44-positive cells. Clin Oral Implants Res. 2014; 25 (3): 366-371.

[23]. Chavda S, Levin L. Human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials: A systematic review. J Oral Implantol. 2018;44(1):74-84.
How to Cite
DUEÑAS-VILLAMIL., Ricardo Ernesto et al. Expression of CD44 in previously grafted alveolar bone.. Journal of Oral Research, [S.l.], v. 9, n. 6, p. 449-456, dec. 2020. ISSN 0719-2479. Available at: <>. Date accessed: 10 june 2023. doi: