Characteristics of the Buccal Shelf for the installation of miniscrews in Chilean individuals aged 15-45 years: a descriptive study
Abstract
Introduction: Orthodontic mini-screws allow complex therapeutic objectives to be achieved conservatively, so their use in clinical practice has increased considerably in recent years. The most important aspect to consider is the stability when installing it, related to the thickness of the cortical bone in the area where it is implanted. In the mandible, it has been seen that the area with the highest success rate is that of the buccal shelf (BS). Several studies have proposed variation in its location and bone thickness according to the characteristics of each patient. Objective: To describe the characteristics of the mandibular vestibular balcony (Buccal Shelf or BS) through the study of CBCT in individuals between 15-45 years of age in the Metropolitan Region of Santiago de Chile.
Materials and Methods: Full-head CBCT images of 159 patients aged 15 to 45 years were analyzed, categorized into 3 groups classified according to age between 15-24 years; 25-34 years; 35-45 years. The patients’ facial pattern was measured based on Steiner’s S-N-Go-Gn angle, where it was classified into three ranges; less than 30 degrees, between 30 and 34 degrees, greater than 34 degrees and were analyzed with BlueSkyPlan software4. For the statistical tests, the normality in the distribution of the data was first analyzed through the Shapiro-Wilk test. For the comparison between variables, the Kruskal Wallis test was used with Bonferroni’s multiple comparisons test. The Horos v.3.3.5 program was used for measurements of alveolar cortical thickness and the angle formed by the cortical contour of the BS in relation to the axial axis of the respective molar. All images were obtained with a KODAK 9500 CT scanner and stored in DICOM files.
Results: The distance from the cortical to the tooth root increases from mesial to distal and as depth increases. When assessing the distance from the cortical to the inferior alveolar nerve, it also increases from mesial to distal, but decreases as the depth of the site increases. The greatest distance is from the vestibular cortical of the distal site of the second mandibular molar at 7mm depth to the root of the same tooth and, also, the vestibular cortical of the distal site of the second mandibular molar at 5 mm depth to the alveolar nerve.
Conclusion: From mesial to distal in this area, the slope of the vestibular balcony increases, becoming flatter; likewise, the distance to the molar root and mandibular alveolar nerve measured from the alveolar cortical also increases. This may be due to the principle of mandibular growth and physiological characteristics of the posterior mandibular area. Different facial patterns show differences in the anatomy of the vestibular balcony, mainly in the angle of the vestibular balcony, but not in the thickness of the alveolar cortical bone in this area. It is important to consider that the variations found in other studies may be due primarily to racial differences.
Keywords: Mandibular vestibular shelf; Bone screws; Orthodontic anchorage procedures; Cortical bone; Mandible; Orthodontics.
References
2. Nucera R, Lo Giudice A, Bellocchio AM, Spinuzza P, Caprioglio A, Perillo L, Matarese G, Cordasco G. Bone and cortical bone thickness of mandibular buccal shelf for mini-screw insertion in adults. Angle Orthod. 2017 Sep;87(5):745-751. doi: 10.2319/011117-34.1. Epub 2017 Jun 9. PMID: 28598220; PMCID: PMC8357207.
3. Nucera R, Bellocchio AM, Oteri G, Farah AJ, Rosalia L, Giancarlo C, Portelli M. Bone and cortical bone characteristics of mandibular retromolar trigone and anterior ramus region for miniscrew insertion in adults. Am J Orthod Dentofacial Orthop. 2019 Mar;155(3):330-338. doi: 10.1016/j.ajodo.2018.04.025. PMID: 30826035.
4. Elshebiny T, Palomo JM, Baumgaertel S. Anatomic assessment of the mandibular buccal shelf for miniscrew insertion in white patients. Am J Orthod Dentofac Orthop. 2018; 153(4):505–11.
5. Baumgaertel S, Jones CL, Unal M. Miniscrew biomechanics: Guidelines for the use of rigid indirect anchorage mechanics. Am J Orthod Dentofac Orthop [Internet]. 2017; 152(3):413–9. http://doi.org/10.1016/j.ajodo.2017.04.020
6. Huang C, Chang C, WE. R. 3D Cortical Bone Anatomy of the Mandibular Buccal Shelf: a CBCT study to define sites for extra-alveolar bone screws to treat Class III malocclusion. Int J Orthod Implant. 2016; 41:74–82.
7. Mohammed H, Wafaie K, Rizk MZ, Almuzian M, Sosly R, Bearn DR. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod. 2018 Sep 24;19(1):36. doi: 10.1186/s40510-018-0225-1. PMID: 30246217; PMCID: PMC6151309.
8. Parinyachaiphun S, Petdachai S, Chuenchompoonut V. Considerations for placement of mandibular buccal shelf orthodontic anchoring screw in Class III hyperdivergent and normodivergent subjects – A cone beam computed tomography study. Orthod Waves. 2018; 77(1):44–56.
9. Alharbi F, Almuzian M, Bearn D. Miniscrews failure rate in orthodontics: systematic review and meta-analysis. Eur J Orthod. 2018 Sep 28;40(5):519-530. doi:
10.1093/ejo/cjx093. PMID: 29315365.
10. Baumgaertel S. Cortical bone thickness and bone depth of the posterior palatal alveolar process for mini-implant insertion in adults. Am J Orthod Dentofacial Orthop. 2011 Dec;140(6):806-11. doi: 10.1016/j.ajodo.2011.05.020. PMID: 22133945.
11. Vargas EOA, Lopes de Lima R, Nojima LI. Mandibular buccal shelf and infrazygomatic crest thicknesses in patients with different vertical facial heights. Am J Orthod Dentofacial Orthop. 2020 Sep;158(3):349-356. doi: 10.1016/j.ajodo.2019.08.016. PMID: 32862936.
12. Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007 May;103(5):e6-15. doi: 10.1016/j.tripleo.2006.11.022. Epub 2007 Feb 21. PMID: 17317235.
13. Rajesh R. Bone mapping of the mandibular buccal shelf - a CBCT study. 2017;137.
14. Poggio PM, Incorvati C, Velo S, Carano A. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod. 2006 Mar;76(2):191-7. doi: 10.1043/0003-3219(2006)076[0191:SZAGFM]2.0.CO;2. PMID: 16539541.
15. Timock AM, Cook V, McDonald T, Leo MC, Crow J, Benninger BL, Covell DA. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. American Journal of Orthodontics and Dentofacial Orthopedics. 2011 Nov;140(5):734-744. doi: 10.1016/j.ajodo.2011.06.021
16. Fayed MM, Pazera P, Katsaros C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010 Sep;80(5):939-51. doi: 10.2319/121009-709.1. PMID: 20578867; PMCID: PMC8939012.
17. Ozdemir F, Tozlu M, Germec-Cakan D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am J Orthod Dentofacial Orthop. 2013 Feb;143(2):190-6. doi: 10.1016/j.ajodo.2012.09.013. PMID: 23374925.
18. Almuzian M, Alharbi F, White J, McIntyre G. Distalizing maxillary molars – how do you do it? Orthod Updat. 2016; 9(2):42–50.
19. Jing Y, Han X, Guo Y, Li J, Bai D. Nonsurgical correction of a Class III malocclusion in an adult by miniscrew-assisted mandibular dentition distalization. Am J Orthod Dentofacial Orthop. 2013 Jun;143(6):877-87. doi: 10.1016/j.ajodo.2012.05.021. PMID: 23726338.
20. Moon CH, Lee DG, Lee HS, Im JS, Baek SH. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008 Jan;78(1):101-6. doi: 10.2319/121706-515.1. PMID: 18193973.
21. Baumgaertel S, Razavi MR, Hans MG. Mini-implant anchorage for the orthodontic practitioner. Am J Orthod Dentofacial Orthop. 2008 Apr;133(4):621-7. doi: 10.1016/j.ajodo.2007.03.022. PMID: 18405827.
22. Kim YB, Bayome M, Park JH, Lim HJ, Mo SS, Lee NK, Kook YA. Displacement of mandibular dentition during total arch distalization according to locations and types of TSADs: 3D Finite element analysis. Orthod Craniofac Res. 2019 Feb;22(1):46-52. doi: 10.1111/ocr.12256. Epub 2018 Dec 10. PMID: 30466181.
23. Park HS. An anatomical study using CT images for the implantation of micro-implants. Korean J Orthod 2002;32:435-441.
24.Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop. 2006 Jun;129(6):721.e7-12. doi: 10.1016/j.ajodo.2006.02.026. PMID: 16769488.
25.Chang C, Liu SS, Roberts WE. Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva. Angle Orthod. 2015 Nov;85(6):905-10. doi: 10.2319/092714.695.1. Epub 2015 Jan 20. PMID: 25603272; PMCID: PMC8612035.
26. Cassetta M, Sofan AA, Altieri F, Barbato E. Evaluation of alveolar cortical bone thickness and density for orthodontic mini-implant placement. J Clin Exp Dent. 2013 Dec 1;5(5):e245-52. doi: 10.4317/jced.51228. PMID: 24455090; PMCID: PMC3892271.
27. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007 Sep-Oct;22(5):779-84. PMID: 17974113.
28. Veli I, Uysal T, Baysal A, Karadede I. Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns. J Orofac Orthop. 2014 Nov;75(6):417-29. doi: 10.1007/s00056-014-0235-7. Epub 2014 Oct 26. PMID: 25344123.
29. Masumoto T, Hayashi I, Kawamura A, Tanaka K, Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod. 2001 Feb;23(1):15-23. doi: 10.1093/ejo/23.1.15. PMID: 11296507.
30. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003 Oct;124(4):373-8. doi: 10.1016/s0889-5406(03)00565-1. PMID: 14560266.
31. Temporary anchorage devices in orthodontics: a paradigm shift. Cope JB. Semin Orthod. 2005;11:3–9.
32. Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent. 1998 Mar;79(3):323-7. doi: 10.1016/s0022-3913(98)70245-8. PMID: 9553887.
33. Kim JH, Park YC. Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs). Korean J Orthod. 2012 Jun;42(3):110-7. doi: 10.4041/kjod.2012.42.3.110. Epub 2012 Jun 28. PMID: 23112941; PMCID: PMC3481976.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. © 2024.