The Effect of Scaffold Hydroxyapatite derived from Portunus pelagicus Shell on the Expression of Fibroblast Growth Factor-2 (FGF-2) and Bone Morphogenetic Proteins-2 (BMP -2) in the Extraction Sockets of Cavia cobaya.

Abstract

Objetive: To determine the expression of Fibroblast Growth Factor (FGF)-2 and Bone Morphogenetic Protein (BMP)-2 after application of scaffold hydroxyapatite from Rajungan crab shell (Portunus pelagicus) in the tooth extraction socket of Cavia cobaya.
Material and Methods: This study used a post-test only control group design with 28 Cavia cobaya separated into two groups, control and treatment group. The left mandibular incisor was extracted, and socket preservation was conducted. A hydroxyapatite graft derived from crab shells was mixed with gelatin and eventually turned into a scaffold, which was afterward put into the extraction socket. After 7 days and 14 days, each group was terminated and examined using immunohistochemical staining to observe the expression of FGF-2 and BMP-2. One-Way Anova and Tukey HSD were used to examine the research data.
Results: FGF-2 and BMP-2 expressions were observed higher in the group that received hydroxyapatite scaffold at the post-extraction socket than those in the group that did not receive hydroxyapatite scaffold.
Conclusion: The application of a hydroxyapatite scaffold from Rajungan crab shell (Portunus pelagicus) to the tooth extraction socket can increase FGF-2 and BMP-2 expression.

References

1. KM S, Koli DK, Jain V, Pruthi G, Nanda A. Comparison of ridge resorption and patient satisfaction in single implant-supported mandibular overdentures with conventional complete dentures: A randomised pilot study. J Oral Biol Craniofac Res. 2021;11(1):71-77. doi:10.1016/J.JOBCR.2020.11.014
2. Kovacic I, Persic S, Kranjcic J, Lesic N, Celebic A. Rehabilitation of an Extremely Resorbed Edentulous Mandible by Short and Narrow Dental Implants. Case Rep Dent. 2018;2018:7597851.
3. Prakash V, Gupta R. Concise Prosthodontics. 2nd ed. New Delhi: Elsevier India; 2017.
4. Mishra R, Shubham S, Yadav D. Role of Alloplast in Alveolar Ridge Preservation Role of Alloplast in Alveolar Ridge Preservation. J Dental Med Scien. 2019;17(August 2019):53-58. doi:10.9790/0853-1709055358
5. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49(4):1461-1475. doi:10.1007/s10853-013-7864-x
6. Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations. https://www.hindawi.com/journals/ijbm/2015/469176/. Accessed February 12, 2020.
7. Sharifianjazi F, Esmaeilkhanian A, Moradi M, Pakseresht A, Asl SM, Karimi-MalehH, Jang HW, Shokouhimehr M, Varma RS. Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mate Scie Engine: B. 2021;264:114950. doi:10.1016/J.MSEB.2020.114950
8. Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI. Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations. Int J Biomater. 2015;2015. doi:10.1155/2015/469176
9. Park OJ, Kim HJ, Woo KM, Baek JH, Ryoo HM. FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem. 2010;285(6):3568-3574. doi: 10.1074/jbc.M109. 055053
10. Zhang Y, Yang S, Zhou W, Fu H, Qian L, Miron RJ. Addition of a Synthetically Fabricated Osteoinductive Biphasic Calcium Phosphate Bone Graft to BMP2 Improves New Bone Formation. Clin Implant Dent Relat Res. 2016;18(6):1238-1247. doi:10.1111/CID.12384
11. Zhang C, Han DH. Synergistic Effect of BMP2 with Bone Grafts Covered by FGF2 Soaked Collagen Membrane on New Bone Formation in Mongrel Dogs Department of Dentistry. 2016.
12. Kresnoadi U, Rahmania PN, Caesar HU, Djulaeha E, Agustono B, Ari MDA. The role of the combination of Moringa oleifera leaf extract and demineralized freeze-dried bovine bone xenograft (xenograft) as tooth extraction socket preservation materials on osteocalcin and transforming growth factor-beta 1 expressions in alveolar bone of Cavia cobaya. J Indian Prosthodont Soc. 2019;19(2):120-125. doi:10.4103/JIPS.JIPS_251_18
14. Kamadjaja MJK. Mekanisme regenerasi defek tulang calvaria kranium tikus dengan scaffold chitosan – carbonate apatite / hidroxy apatite - human amniotic mesenchymal stem cell. Penelitian Eksperimental Laboratoris pada Tikus Putih Jenis Wistar [Tesis]. 2016.
15. Ramadhani T, Sari RP, W W. Efektivitas Kombinasi Pemberian Minyak Ikan Lemuru (Sardinella longiceps) dan Aplikasi Hidroksiapatit terhadap Ekspresi FGF-2 pada Proses Bone Healing. Denta. 2016;10(1):20. doi:10.30649/denta.v10i1.24
16. Malianawati Fauzia, Poernomo Agoes Wibisono EM. Ekspresi Bmp-2 Pada Pemberian Hydroxiapatite Xenograft Dan Hydroxiapatite Tooth-Derived Bone Graft Material Pada Soket Marmut. 2019;3(47):225-231.
17. Dahlan A, Hidayati HE, Hardianti SP. Collagen fiber increase due to hydroxyapatite from crab shells (Portunus pelagicus) application in post tooth extraction in Wistar rats. Eurasian J Biosci. 2020;14(2):3785-3789.
18. Vachiraroj N, Damrongsakkul S, Kanokpanont S. Gelatin/hydroxyapatite scaffolds: Studies on adhesion, growth and differentiation of Mesenchymal stem cells. Adv Mat Res. 2010;93-94:121-124. doi:10.4028/www.scientific.net/AMR.93-94.121
19. Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407-429. doi: 10.22203/eCM.v021a31
20. Baldini N, Cenni E, Ciapetti G, Granchi D, Savarino L. Bone Repair and Regeneration. Woodhead Publishing Limited; 2009. doi:10.1533/9781845696610.1.69
21. Huang Z, Nelson ER, Smith RL, Goodman SB. The sequential expression profiles of growth factors from osteroprogenitors to osteoblasts in vitro. Tissue Eng. 2007;13(9):2311-2320. doi:10.1089/ten.2006.0423
22. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49(4):1461-1475. doi: 10.1007/s10853-013-7864-x
23. Wibisono, Y, Dwijaksara NLB, Widayatno WB, Wismogroho AS, Amal MI, Rochman NT, Noviyanto A. Synthesis and sinterability of hydroxyapatite from fishery by-products. J Korean Ceramic Soc. 2018;55(6):570-575. doi:10.4191/kcers.2018.55.6.03
24. Kamadjaja MJK, Abraham JF, Laksono H. Biocompatibility of Portunus Pelagicus Hydroxyapatite Graft on Human Gingival Fibroblast Cell Culture. Med Arch. 2019;73(5):303-306. doi:10.5455/medarh.2019.73.303-306
25. Ji L, Qiao W, Zhang Y, et al. A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Mater Sci Eng C Mater Biol Appl. 2017;78:362-369. doi:10.1016/J.MSEC.2017.04.070
26. Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018;5(2):115-124. doi:10.1093/rb/rby001
Published
2022-11-30
How to Cite
KRIDANTO KAMADJAJA, Michael J.; SALIM, Sherman; GEMIUDEAS, Gigih. The Effect of Scaffold Hydroxyapatite derived from Portunus pelagicus Shell on the Expression of Fibroblast Growth Factor-2 (FGF-2) and Bone Morphogenetic Proteins-2 (BMP -2) in the Extraction Sockets of Cavia cobaya.. Journal of Oral Research, [S.l.], v. 11, n. 5, p. 1-10, nov. 2022. ISSN 0719-2479. Available at: <https://joralres.com/index.php/JOralRes/article/view/joralres.2022.059>. Date accessed: 23 apr. 2024. doi: https://doi.org/10.17126/joralres.2022.059.