Caries and genetic variability of Streptococcus mutans.

  • Fabiana P. M. Carletto-Körber Cátedra de Odontopediatría A, Fac. de Odontología, Universidad Nacional de Córdoba, Argentina.
  • Noelia S. Vera Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.
  • Lila Susana Cornejo Equipo de investigación interdisciplinaria Promoción de salud Contextualizada (PROCON), Universidad Nacional de Córdoba, Argentina.
  • Raúl E. González-Ittig Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina./Instituto de Diversidad y Ecología Animal (IDEA), CONICET-Universidad Nacional de Córdoba, Argentina.

Abstract

In the last two decades, the increase in population genetics studies has contributed to elucidating important questions about the evolution of the pathogenesis of bacteria of clinical interest. The objective of this study is to revise and update the knowledge of the last fifteen years regarding the genetic variability of Streptococcus mutans and their association with dental caries. Streptococcus mutans, one of the most widely distributed bacteria in the world, are heavily associated with this condition. This research shows the results of numerous studies carried out in various countries that, using molecular and biochemical methods, revealed associations between different serotypes and caries activity. In addition, it is reported that the population genetics structure of Streptococcus mutans in Argentina is highly recombinant, which reflects the largest waves of human immigration that occurred in the 19th and 20th centuries. On the other hand, demographic analysis suggests that these bacteria experienced a population expansion that coincided with the beginning of agricultural development.

References

1. Musser JM. Molecular population genetic analysis of emerged bacterial pathogens: selected insights. Emerg Infect Dis.1996;2:1–17.
2. Maynard-Smith J, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA.1993;90:4384-88.
3. Maribel Farfán Sellarés. Estudio de la estructura genética de poblaciones de Vibrio cholerae. [Tesis]. 2002.
4. Tsongalis GJ, Silverman LM. Molecular diagnostics: a historical perspective. Clin Chim Acta. 2006. 23;369(2):188-92.
5. Leber AL. Pertussis: relevant species and diagnostic update. Clin Lab Med. 2014;34(2):237-55.
6. Nurelhuda NM, Al-Haroni M, Trovik TA, Bakken V. Caries experience and quantification of Streptococcus mutans and Streptococcus sobrinus in saliva of Sudanese schoolchildren. Caries Res.2010;44(4):402-7.
7. Gomes MC, Pinto-Sarmento TC, Costa EM, Martins CC, Granville-Garcia AF, Paiva SM. Impact of oral health conditions on the quality of life of preschool children and their families: a cross-sectional study. Health Qual Life Outcomes. 2014;12(55):1-19.
8. Head DA, Marsh PD, Devine DA. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque. PLoS One.2014;9(8): e105012.
9. Thorild I, Lindau-Jonson B, Twetman S. Prevalence of salivary Streptococcus mutans in mothers and in their preschool children. Int J Paediatr Dent.2002;12(1):2-7.
10. Cheon K, Moser SA, Wiener HW, Whiddon J, Momeni SS, Ruby JD, Cutter GR, Childers NK. Characteristics of Streptococcus mutans genotypes and dental caries in children. Eur J Oral Sci. 2013;121(3Pt1):148-55.
11. Gilbert K, Joseph R, Vo A, Patel T, Chaudhry S, Nguyen U, Trevor A, Robinson E, Campbell M, McLennan J, Houran F, Wong T, Flann K, Wages M, Palmer EA, Peterson J, Engle J, Maier T, Machida CA. Children with severe early childhood caries: streptococci genetic strains within carious and white spot lesions. J Oral Microbiol. 2014;29:6-10.
12. Acevedo AM, Ray MV, Socorro M, Rojas Sánchez F. Frequency and distribution of mutans streptococci in dental plaque from caries-free and caries-affected Venezuelan children. Acta Odontol Latinoam. 2009;22(1):15-20.
13. Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 2002;99(22):14434-9.
14. Nakano K, Lapirattanakul J, Nomura R, Nemoto H, Alaluusua S, Grönroos L, Vaara M, Hamada S, Ooshima T, Nakagawa I. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J Clin Microbiol. 2007;45:2616-25.
15. Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol. 2009;4:891-902.
16. Nakano K, Nomura R, Nakagawa I, Hamada S, Ooshima T. Demonstration of Streptococcus mutans with a cell wall polysaccharide specific to a new serotype k, in the Human oral cavity. J Clin Microbiology. 2004a;42(1):198-202.
17. Nakano K, Nomura R, Shimizu N, Nakagawa I, Hamada S, Ooshima, T. Development of a PCR method for rapid identification of new Streptococcus mutans serotype k strains. J Clin Microbiol. 2004b;42:4925-30.
18. Nakano K, Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, Amano A, Ooshima T. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol Immunol. 2009;24:64-68.
19. Sonbol H, Spratt D, Roberts GJ, Lucas VS. Prevalence, intensity and identity of bacteraemia following conservative dental procedures in children. Oral Microbiol Immunol 2009;24:177-82.
20. Abranches J, Zeng L, Bélanger M, Rodrigues PH, Simpson-Haidaris PJ, Akin D, Dunn WA Jr, Progulske-Fox A, Burne RA. Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. Oral Microbiol Immunol. 2009;24:141-45.
21. Nagata E, Okayama H, Ito HO, Yamashita Y, Inoue M, Oho T. Serotype-specific polysaccharide of Streptococcus mutans contributes to infectivity in endocarditis. Oral Microbiol Immunol. 2006;21:420-24.
22. Shibata Y, Ozaki K, Seki M, Kawato T, Tanaka H, Nakano Y, Yamashita Y. Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization. J Clin Microbiol. 2003;41:4107-12.
23. Lapirattanakul J, Nakano K, Nomura R, Nemoto H, Kojima A, Senawongse P, Srisatjaluk R, Ooshima T. Detection of serotype k Streptococcus mutans in Thai subjects. Oral Microbiol Immunol. 2009;24:431-33.
24. Carletto-Körber FP, González-Ittig RE, Jimenez MG, Cornejo LS. Serotype diversity of Streptococcus mutans and caries activity in children in Argentina. Eur J Paediatr Dent. 2015;16(3):177-80.
25. Momeni SS, Ghazal T, Grenett H, Whiddon J, Moser SA, Childers NK. Streptococcus mutans serotypes and collagen‐binding proteins Cnm/Cbm in children with caries analysed by PCR. Mol Oral Microbiol. 2019;34:64-73.
26. Quinteros L. La alimentación como un factor de riesgo. Universidad Nacional de Catamarca. Facultad de Ciencias de la Salud. Dirección General de Prensa y Protocolo. 2009.
27. World Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. (Vol. 916). 2003.
28. Waterhouse JC, Russell RR. Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology. 2006;152:1777-88.
29. Cornejo OE, Lefébure T, Bitar PDP, Lang P, Richards VP, Eilertson K, Do T, Beighton D, Zeng L, Ahn S-J, Burne RA, Siepel A, Bustamante CD, Stanhope MJ. Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol.2013;30:881-93.
30. Lapirattanakul J, Nakano K, Nomura R, Leelataweewud P, Chalermsarp N, Klaophimai A, Srisatjaluk R, Hamada S, Ooshima T. Multilocus sequence typing analysis of Streptococcus mutans strains with the cnm gene encoding collagen-binding adhesin. J Med Microbiol.2011;60(Pt11):1677-84.
31. Do T, Gilbert SC, Clark D, Ali F, Fatturi Parolo CC, Maltz M, Russell RR, Holbrook P, Wade WG, Beighton D. Generation of diversity in Streptococcus mutans genes demonstrated by MLST. PLoS ONE.2010;5(2):e9073.
32. González-Ittig RE, Carletto-Körber FPM, Vera NS, Jimenez MG, Cornejo LS. Population genetic structure and demographic history of Streptococcus mutans (Bacteria: Streptococcaceae). Biol J Linn Soc.2017;120(3):705-16.
33. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes.2007;7:574–78.
34. Didelot X, Maiden MC. Impact of recombination on bacterial evolution. Trends Microbiol 2010;18:315-22.
35. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969–73.
36. Humphrey LT, De Groote I, Morales J, Barton N, Collcutt S, Ramsey CB, Bouzouggarh A. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. P Natl Acad Sci USA 2014;111:954–59.
37. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJA, Townsend G, Sołtysiak A, Alt KW, Parkhill J, Cooper A. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 2013;45:450-55.
Published
2020-07-31
How to Cite
CARLETTO-KÖRBER, Fabiana P. M. et al. Caries and genetic variability of Streptococcus mutans.. Journal of Oral Research, [S.l.], p. 39-48, july 2020. ISSN 0719-2479. Available at: <https://joralres.com/index.php/JOR/article/view/joralres.2020.064>. Date accessed: 30 july 2021. doi: https://doi.org/10.17126/joralres.2020.064.