Flexural strength of polyether ether ketone high-performance polyether in comparison with base metal alloy and Zirconia ceramic.

  • Negar Barjini Department of Prosthodontics, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran.
  • Talayeh Katebi Department of Prosthodontics, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran.
  • Rohham Bahadoran Department of Prosthodontics, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran.
  • Navid Youssefi Department of Prosthodontics, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran.


Optimal flexural strength is a critical prerequisite for prosthetic frameworks. This study aimed to assess the flexural strength of polyether ether ketone (PEEK) polymer compared to a base metal alloy and high-strength Zirconia ceramic commonly used in prosthodontic treatments. Materials and Methods: In this in vitro, experimental study, 10 bar-shaped samples measuring 18×5×2mm were fabricated of each the PEEK polymer, nickel-chromium base metal alloy and zirconia ceramic. Half of the samples in each group were subjected to 5000 thermal cycles between 5°C - 55°C with 20 seconds of dwell time and 20 seconds of transfer time to simulate oral conditions. All samples then underwent three-point bending test. Two-way ANOVA followed by Tukey’s test were applied to compare the mean flexural strength of the groups with and without thermocycling at 0.05 level of significance. Results: The flexural strength of base metal alloy, Zirconia and PEEK was 1387.70±45.50 MPa, 895.13±13.99 MPa and 192.10±5.37 MPa, respectively. The difference was significant among the groups (p<0.001). Thermocycling had no significant effect on the flexural strength of samples in any group (p=0.306). Conclusion: PEEK high-performance polymer had a lower flexural strength than base metal alloy and Zirconia ceramic, and its flexural strength was not affected by thermocycling. PEEK seems to be able to resist masticatory forces in the oral cavity pending further in vitro and clinical studies.


1. al-Hiyasat AS, Saunders WP, Sharkey SW, Smith GM, Gilmour WH. Investigation of human enamel wear against four dental ceramics and gold. J Dent. 1998;26:487-95.
2. Dahl BL, Carlsson GE, Ekfeldt A. Occlusal wear of teeth and restorative materials. A review of classification, etiology, mechanisms of wear, and some aspects of restorative proce-dures. Acta Odontol Scand. 1993;51:299-311.
3. Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect of sulfuric acid etching of polye-theretherketone on the shear bond strength to resin cements. J Adhes Dent. 2014;16:465-72.
4. Stawarczyk B, Bähr N, Beuer F, Wimmer T, Eichberger M, Gernet W, Jahn D, Schmidlin PR. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin Oral Investig. 2014;18:163-70.
5. Stawarczyk B, Jordan P, Schmidlin PR, Roos M, Eichberger M, Gernet W, Keul C. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112:1278-88.
6. Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent Mater. 2014;30:e209-15.
7. Rocha RF, Anami LC, Campos TM, Melo RM, Souza RO, Bottino MA. Bonding of the Polymer Polyetheretherketone (PEEK) to Human Dentin: Effect of Surface Treatments. Braz Dent J. 2016;27:693-9.
8. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12-9.
9. Wiesli MG, Ozcan M. High-Performance Polymers and Their Potential Application as Medical and Oral Implant Materials: A Review. Implant Dent. 2015;24:448-57.
10. Aboushelib MN, Wang H. Effect of surface treatment on flexural strength of zirconia bars. J Prosthet Dent. 2010;104:98-104.
10. Pokorny D, Fulin P, Slouf M, Jahoda D, Landor I, Sosna A. Polyetheretherketone (PEEK). Part II: Application in clinical practice. Acta Chir Orthop Traumatol Cech. 2010;77:470–8.
11. Kurtz, SM, Devine, JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869.
12. Staniland P, Wilde C, Bottino F, Di Pasquale G, Pollicino A, Recca A. Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer. 1992;33:1976–81.
13. Skinner HB. Composite technology for total hip arth-roplasty. Clin Orthop. 1988;235:224–36.
14. Rees J, Jacobsen P. The elastic moduli of enamel and dentine. Clin Mater. 1993;14:35–39.
15. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017
16. Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008;36:316-21.
17. Pick B, Meira JB, Driemeier L, Braga RR. A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses. Dent Mater. 2010; 26 (1): 83-90.
18. Poonacha V, Poonacha S, Salagundi B, Rupesh PL, Raghavan R. In vitro comparison of flexural strength and elastic modulus of three provisional crown materials used in fixed prosthodontics. J Clin Exp Dent. 2013; 5(5): e212-7.
19. Zoidis P, Bakiri E, Polyzois G. Using modified polye-theretherketone (PEEK) as an alternative material for endo-crown restorations: A short-term clinical report. J Prosthet Dent. 2017;117:335-9
20. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J Prosthodont. 2016;25:580-4.
21. Han KH, Lee JY, Shin SW. Implant- and Tooth-Supported Fixed Prostheses Using a High-Performance Polymer (Pekkton) Framework. Int J Prosthodont. 2016;29:451-4.
22. Schwitalla AD, Spintig T, Kallage I3, Müller WD. Flexural behavior of PEEK materials for dental application. Dent Mater. 2015;31:1377-84.
23. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced polye-theretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types. Dent Mater J. 2015;34:7-12.
24. Denry I, Kelly JR. State of the art of zirconia for dental applications dental materials. Dent Mater. 2008;24(3):299-307.
25. Zarone F, Russo S, Sorrentino R. From porcelain-fused-tometal to zirconia: clinical and experimental considerations. Dent Mater. 2011:27(1):83-96.
26. Pilathadka S, Vahalová D, Vosáhlo T. The Zirconia: a New Dental Ceramic Material. An Overview. Prague Med Rep. 2007;108(1),5-12.
27. Garvie RC, Nicholson PS. Structure and thermodynamic properties of partially stabilized zirconia in the CaO-ZrO2 system. J Am Ceram Soc. 1972;55(3):152-7.
28. Lüthy H, Filser F, Loeffel O, Schumacher M, Gauckler LJ, Hammerle CH. Strength and reliability of four-unit all-ceramic posterior bridges. Dent Mater. 2005;21(10):930-7.
29. Taskonak B, Griggs JA, Mecholsky Jr JJ, Yan JH. Analysis of subcritical crack growth in dental ceramics using fracture flexure mechanics and fractography. Dent Mater. 2008;24(5):700-7.
30. Hjerppe J, Närhi TO, Vallittu PK, Lassila LV. Surface roug-hness and the flexural and bend strength of zirconia after different surface treatments. J Prosthet Dent. 2016;116:577-83.
31. Aboushelib MN, Wang H. Effect of surface treatment on flexural strength of zirconia bars. J Prosthet Dent. 2010;104:98-104.
32. Siarampi E, Kontonasaki E, Papadopoulou L, Kantiranis N, Zorba T, Paraskevopoulos KM, Koidis P. Flexural strength and the probability of failure of cold isostatic pressed zirconia core ceramics. J Prosthet Dent. 2012;108:84-95.
33. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17:269-74.
34. Schatz C, Strickstrock M, Roos M, Edelhoff D, Eichberger M, Zylla IM, Stawarczyk B. Influence of specimen preparation and test methods on the flexural strength results of monolithic zirconia materials. Materials. 2016;9:180.
35. Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017;118(5):658-65.
36. Gustavsen F, Berge M, Hegdahl T. Flexural strength of a high-temperature soldered cobalt-chromium alloy. J Prosthet Dent. 1989;61:568-71.
37. Kola MZ, Raghav D, Kumar P, Alqahtani F, Murayshed MS, Bhagat TV. In vitro Assessment of Clasps of Cobalt-Chromium and Nickel-titanium Alloys in Removable Prosthesis. J Contemp Dent Pract. 2016;17:253-7.
38. Rocha R, Pinheiro AL, Villaverde AB. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding. Braz Dent J. 2006;17:20-3.
39. M L. Review of Fixed Partial Dentures. India: Jaypee; 2006.
40. Baran GR. The metallurgy of Ni-Cr alloys for fixed prosthodontics. J Prosthet Dent. 1983;50:639-50.
41. Nazari V, Ghodsi S, Alikhasi M, Sahebi M, Shamshiri AR. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials. J Dent. 2016;13:400-6.
42. Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112:649-57.
43. Shastry T, Anupama NM, Shetty S, Nalinakshamma M. An in vitro comparative study to evaluate the retention of different attachment systems used in implant-retained overdentures. J Indian Prosthodont Soc. 2016;16:159-66.
44. Lee EY, Jun SG, Wright RF, Park EJ. Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium. J Adv Prosthodont. 2015; 7(1):69-75.
45. Oyafuso DK, Ozcan M, Bottino MA, Itinoche MK. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks. Dent Mater. 2008;24:351-6.
46. Vojdani M, Shaghaghian S, Khaledi A, Adibi S. The effect of thermal and mechanical cycling on bond strength of a ceramic to nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys. Indian J Dent Res. 2012;23:509-13.
47. Vult von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil. 2006;33:682-9.
48. Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manu-facturing (CAM) fabricated framework materials. Eur J Oral Sci. 2008;116:381-6.
49. Mitov G, Anastassova-Yoshida Y, Nothdurft FP, von See C, Pospiech P. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns. J Adv Prosthodont. 2016;8:30-6.
50. Taufall S, Eichberger M, Schmidlin PR, Stawarczyk B. Fracture load and failure types of different veneered polyetheretherketone fixed dental prostheses. Clin Oral Investig. 2016;20:2493-500.
51. Liebermann A, Wimmer T, Schmidlin PR, Scherer H, Löffler P, Roos M, Stawarczyk B. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J Prosthet Dent. 2016;115:321-8.e2.
52. Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008;36:316-21.
53. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater. 2006; 22(6): 527-32.
How to Cite
BARJINI, Negar et al. Flexural strength of polyether ether ketone high-performance polyether in comparison with base metal alloy and Zirconia ceramic.. Journal of Oral Research, [S.l.], v. 9, n. 1, p. 63-71, mar. 2020. ISSN 0719-2479. Available at: <http://joralres.com/index.php/JOR/article/view/joralres.2020.010>. Date accessed: 30 oct. 2020. doi: https://doi.org/10.17126/joralres.2020.010.