Efficacy of copper sulphate on Candida albicans on heat-polymerized acrylic resin.

  • Elisa Huerta Patología y Diagnóstico Oral, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.
  • Daisy Gorup Patología y Diagnóstico Oral, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.
  • Manuel Manríquez Patología y Diagnóstico Oral, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.
  • Rodrigo Cruz Choappa Laboratorio de Micología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
  • Peggy Vieille Laboratorio de Micología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
  • Wilfredo González-Arriagada Patología y Diagnóstico Oral, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.|Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas (CICOM), Universidad de Valparaíso, Valparaíso, Chile.

Abstract

The ageing of population is increasing, and a great percentage of these patients wear removable prostheses, and can suffer denture stomatitis, a condition that has been associated with candidiasis. Aims: To evaluate in vitro the effectiveness of Copper Sulfate against Candida albicans in samples of heat-polymerized acrylic resin, compared to nystatin, sodium hypochlorite and chlorhexidine.  Materials and Methods: Initially, the minimum inhibitory concentration (MIC) of copper sulfate for Candida albicans was determined by microdilution. Then, 54 resin samples were divided into 6 treatment groups corresponding to Nystatin 100.000 UI, Sodium Hypochlorite 0.5%, chlorhexidine 0.12%, Copper Sulfate 4.7µg/ml, Copper Sulfate 9.4µg/ml and physiological saline solution, in which samples were submerged for 6 hours. Resin samples were then washed and cultured on solid media at 37°C for 72 hours. The number of colony-forming units was determined using a Quebec colony counter. The statistical analysis was performed using the Kruskal-Wallis test and the Mann-Whitney U test.  Results: Copper sulfate at a concentration of 9.4μg/ml presented a similar effectiveness as the other control products regarding the reduction in the number of colonies of Candida albicans post-treatment. Conclusion: The effectiveness of copper sulfate against Candida albicans on acrylic resin was similar to that of nystatin, sodium hypochlorite and chlorhexidine.

References

1. Villalobos Dintrans P. Is aging a problem?: Dependency, long-term care, and public policies in Chile. Rev Panam Salud Pública. 2018;42:1-5.
2. Loster JE, Wieczorek A, Loster BW. Correlation between age and gender in Candida species infections of complete denture wearers: a retrospective analysis. Clin Interv Aging. 2016;11:1707-14.
3. Leon S, De Marchi RJ, Torres LH, Hugo FN, Espinoza I, Giacaman RA. Oral health of the Latin American elders: What we know and what we should do-Position paper of the Latin American Oral Geriatric Group of the International Association for Dental Research. Gerodontology. 2018;35:71-7.
4. Peric M, Radunovic M, Pekmezovic M, Marinkovic J, Zivkovic R, Arsic Arsenijevic V. Laboratory-Based Investigation of Denture Sonication Method in Patients with Candida-Associated Denture Stomatitis. J Prosthodont. 2019;28:580-6.
5. Offenbacher S, Barros SP, Bencharit S, Yu N, Preisser J, Moss K, Loewy ZG. Differential Mucosal Gene Expression Patterns in Candida-Associated, Chronic Oral Denture Stomatitis. J Prosthodont. 2019;28:202-8.
6. Lynge Pedersen AM, Nauntofte B, Smidt D, Torpet LA. Oral mucosal lesions in older people: relation to salivary secretion, systemic diseases and medications. Oral Dis. 2015;21:721-9.
7. Rodrigues ME, Silva S, Azeredo J, Henriques M. Novel strategies to fight Candida species infection. Crit Rev Microbiol. 2016;42:594-606.
8. Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS pathogens. 2017;13:e1006403.
9. Yarborough A, Cooper L, Duqum I, Mendonca G, McGraw K, Stoner L. Evidence Regarding the Treatment of Denture Stomatitis. J Prosthodont. 2016;25:288-301.
10. Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta. 2012;1823:1580-93.
11. Anand J, Rai N. Anticandidal synergistic activity of green tea catechins, antimycotics and copper sulphate as a mean of combinational drug therapy against candidiasis. J Mycol Med. 2017;27:33-45.
12. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124:1032-46.
13. Wichai S, Chuysinuan P, Chaiarwut S, Ekabutr P, Supaphol P. Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. Journal of Drug Delivery Science and Technology. 2019;51:662-71.
14. Cueto A, Martinez R, Niklander S, Deichler J, Barraza A, Esguep A. Prevalence of oral mucosal lesions in an elderly population in the city of Valparaiso, Chile. Gerodontology. 2013;30:201-6.
15. Zoccolotti JO, Tasso CO, Arbeláez MIA, Malavolta IF, Pereira ECDS, Esteves CSG, Jorge JH. Properties of an acrylic resin after immersion in antiseptic soaps: Low-cost, easy-access procedure for the prevention of denture stomatitis. PLoS One. 2018;13:e0203187.
16. Yogurtcu BM, Demirci S, Dogan A, Asutay AB, Sahin F. Anticandidal activity of hetero-dinuclear copper(II) Mn(II) Schiff base and its potential action of the mechanism. World J Microbiol Biotechnol. 2017;33:202.
17. Quaranta D, Krans T, Espírito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol. 2011;77:416-26.
18. Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics. 2011;3:1109-18.
19. Douglas LM, Konopka JB. Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genet. 2019;15:e1007911.
20. Pawashe KG, Tewary S, Sanyal PK, Nilesh K. An In vitro Comparative Evaluation of Disinfectants on Standard and Clinical Microbial Strains on Heat Cure Resins. J Clin Diagn Res. 2017;11:ZC54-ZC8.
21. Aslanimehr M, Mojarad N, Ranjbar S, Aalaei S. In vitro comparison of the effects of microwave irradiation and chemical and mechanical methods on the disinfection of complete dentures contaminated with Candida albicans. Dent Res J. 2018;15:340-6.
22. Porwal A, Khandelwal M, Punia V, Sharma V. Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins. J Indian Prosthodont Soc. 2017;17:61-7.
23. Dalwai S, Rodrigues SJ, Baliga S, Shenoy VK, Shetty TB, Pai UY, et al. Comparative evaluation of antifungal action of tea tree oil, chlorhexidine gluconate and fluconazole on heat polymerized acrylic denture base resin - an in vitro study. Gerodontology. 2016;33:402-9.
24. Ferreira MA, Pereira-Cenci T, Rodrigues de Vasconcelos LM, Rodrigues-Garcia RC, Del Bel Cury AA. Efficacy of denture cleansers on denture liners contaminated with Candida species. Clin Oral Investig. 2009;13:237-42.
25. Slaughter RJ, Watts M, Vale JA, Grieve JR, Schep LJ. The clinical toxicology of sodium hypochlorite. Clin Toxicol. 2019;57:303-11.
26. Aoun G, Cassia A, Berberi A. Effectiveness of a Chlorhexidine Digluconate 0.12% and Cetylpyridinium Chloride 0.05% Solution in eliminating Candida albicans Colonizing Dentures: A Randomized Clinical in vivo Study. J Contemp Dent Pract. 2015;16:433-6.
27. Gama MC, de Oliveira DG, da Silva PM, Ordinola-Zapata R, Duarte MH, Porto VC. Antifungal activity of 4% chlorhexidine and 2% sodium hypochlorite against Candida albicans biofilms. Gen Dent. 2015;63:43-7.
28. de Sousa Porta SR, de Lucena-Ferreira SC, da Silva WJ, Del Bel Cury AA. Evaluation of sodium hypochlorite as a denture cleanser: a clinical study. Gerodontology. 2015;32:260-6.
29. Bueno MG, Urban VM, Barbério GS, da Silva WJ, Porto VC, Pinto L, Neppelenbroek KH. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis. 2015;21:57-65.
30. Bulcke F, Dringen R, Scheiber IF. Neurotoxicity of Copper. Adv Neurobiol. 2017;18:313-43.
31. Justel F, Claros M, Taboada M. Solubilities and physical properties of saturated solutions in the copper sulfate+ sulfuric acid+ seawater system at different temperatures. Brazilian J Chem Eng. 2015;32:629-35.
Published
2020-03-31
How to Cite
HUERTA, Elisa et al. Efficacy of copper sulphate on Candida albicans on heat-polymerized acrylic resin.. Journal of Oral Research, [S.l.], v. 9, n. 1, p. 57-62, mar. 2020. ISSN 0719-2479. Available at: <http://joralres.com/index.php/JOR/article/view/joralres.2020.009>. Date accessed: 30 oct. 2020. doi: https://doi.org/10.17126/joralres.2020.009.
Section
Articles